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Gradient-Based Learning Applied to Document
Recognition, LeCun, Bottou, Bengio and Haffner, Proc. of
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Imagenet Classification with Deep Convolutional Neural
Networks, Krizhevsky, Sutskever, and Hinton, NIPS 2012
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Object recognition & Classification




Image segmentation
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JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY

Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy
in Retinal Fundus Photographs

Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD;
Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB;
Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD

Figure 2. Validation Set Performance for Referable Diabetic Retinopathy
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Gulshan V, et al. JAMA. 2016;316(22):2402-2410.



Dermatologist-level classification of skin cancer
with deep neural networks

Andre Esteva, Brett Kuprel™, Roberto A. Novoa®, Justin Ko?, Susan M. Swetter»4, Helen M. Blau® & Sebastian Thrun®
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VIEWPOINT

Geoffrey Hinton, PhD
Google Brain Team and
Department of
Computer Science,
University of Toronto,
Ontano, Canada.

Viewpoint page 1055
and Editorial
page 1107

Related article
page 1192

Deep Learning—A Technology
With the Potential to Transform Health Care

Widespread application of artificial intelligence in
health care has been anticipated for half a century. For
most of that time, the dominant approach to artificial in-
telligence was inspired by logic: researchers assumed
that the essence of intelligence was manipulating sym-
bolic expressions, using rules of inference. This approach
produced expert systems and graphical models that at-
tempted to automate the reasoning processes of experts,
Inthe last decade, however, a radically different approach
toartificial intelligence, called deep learning, has produced
major breakthroughs and is now used on billions of digital
devices for complex tasks such as speech recognition,
image interpretation, and language translation. The pur-
pose of this Viewpoint is to give health care profession-
als an intuitive understanding of the technology under-
lying deep learning. In an accompanying Viewpoint,
Naylor' outlines some of the factors propelling adoption
of this technology in medicine and health care.

retrain a convolutional neural network that had previ-
ously been trained to recognize everyday objects in
cluttered images. The skin lesion images used for
retraining varied widely in quality, and no further infor-
mation was provided to the convolutional neural net-
work other than the image pixels and the lesion label.
The network and groups of 21 to 25 board-certified
dermatologists then reviewed subsets of the unlabeled
test images and decided whether the correct clinical
course was a biopsy for possible malignancy or reassur-
ance of the patient. Sensitivity for the majority of the
dermatologists was lower than that of the convolu-
tional neural network when matched for specificity,
and their specificity was lower than that of the convolu-
tional neural network when matched for sensitivity for
identifying images with melanoma, as well as for
images of basal and squamous cell carcinoma.

G. Hinton. JAMA. 2018;320(11):1101-1102. d0i:10.1001/jama.2018.11100.



The limitation of computer vision in medicine

No large dataset available
(Annotation, imbalance)

Black box mechanism,
accountability

No general rule for each
problem




Physical exam

Rapid, Accurate
NO miss







Plain Pelvic film (PXR)

is the essential of
trauma survey

ATLS 10th edition
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Hip X-ray anatomy - Normal AP

¢ Shenton's line is formed by the medial edge of the
femoral neck and the inferior edge of the superior
pubic ramus

¢ Loss of contour of Shenton's line is a sign of a
fractured neck of femur

¢ IMPORTANT NOTE: Fractures of the femoral neck
do not always cause loss of Shenton's line
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MARKET
EVALUATION

> 65 Y/O, annual case of hip fracture : 957.3 /100000 woman

414.4 /100000 man

30% of people with a hip fracture will die in the following year

Kirby et al. Radiographic Detection of Hip and Pelvic Fractures in the Emergency Department. AJR, 2010.
Cabarrus et al. MRI and CT of insufficiency fractures of the pelvis and the proximal femur. AJR, 2008.

Brauer et al. Incidence and Mortality of Hip Fractures in the United States. JAMA 2009.



MARKET
EVALUATION

1 0-1 4% of people with a hip fracture miss-diagnosed

Miss-diagnosed hip fracture Doubled the risk of dylﬂg
before the end of the first postop year

Kirby et al. Radiographic Detection of Hip and Pelvic Fractures in the Emergency Department. AJR, 2010.
Cabarrus et al. MRI and CT of insufficiency fractures of the pelvis and the proximal femur. AJR, 2008.

Brauer et al. Incidence and Mortality of Hip Fractures in the United States. JAMA 2009.
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PERFORMANCE OF THE SYSTEM

ImageNet CGMHTrO1

Class Scratch Pretained Pretrained PHYCISIANSs
Training set 0.81 0.94 0.96
Validation set 0.81 0.89 0.91

Testing set 0.79 0.91 0.96 0.70-0.96



True positive fraction

0.754

0.50 4

@ Radiologist

Orthopedic

Surgeon

@ ED Physician
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