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Food Security
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Traditional Farming
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Why Machine Vision?

• Labor shortage

• Aging of farmers
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109年農林漁牧業普查初步統計結果提要分析
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Smart Machine Vision

• Optical sensors (e.g., cameras)

• Capturing images of objects

• Calculating and processing the information in the images (e.g., deep learning)

• Monitoring, warning, or taking action using the information
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Machine Vision Application

https://www.assemblymag.com/ext/resources/White_Papers/Sep16/Introduction-to-Machine-Vision.pdf 
https://medium.com/vsinghbisen/application-of-computer-vision-in-precision-agriculture-farming-79b0600d5a5d
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What Smart Machine Vision Can Do? 

AlexNet

VGG-16

ResNet-55

EfficientNet

Fast R-CNN

Faster R-CNN

YOLO v4

YOLO v5

U-Net

FCN

DeepLabv3+

Mask R-CNN

MaskLab

YOLACT
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What Smart Machine Vision Can Do? 

CRNN
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5 Behavior 

Recognition
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Implementation Flow of Machine Vision
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Image Acquisition
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Implementation Situations

One-time Continuous
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Image Acquisition

Cellphone Embedded system/ ip camera
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Implementation Flow of Machine Vision
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Machine Vision
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Procedure – Training A Deep Learning Model

Step 4 | Choosing a suitable model architecture

Step 1 | Preparing at least 500 images for each category

Step 2 | Generalizing the images using augmentation

Step 3 | Choosing a framework
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Step 6 | Evaluating the model performance

Step 5 | Training the model
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Image Collection

Blur Missing object Too small Occluded
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Image Annotation

Classification Localization 

and 

classification

Semantic 

segmentation

Instance 

segmentation

Chicken
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Image Augmentation

• Adjusting existing training images to generalize to other situations

• Allowing the model to learn from a wider array of situations
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Smart Machine Vision Tasks – Static

AlexNet

VGG-16

ResNet-55

EfficientNet

Fast R-CNN

Faster R-CNN

YOLO v4

YOLO v5

U-Net

FCN

DeepLabv3+

Mask R-CNN

MaskLab

YOLACT
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188 36 140 148 135 84 231

21 228 40 57 51 166 175

143 100 173 232 49 245 0

227 44 203 165 169 93 250

228 184 185 227 29 48 139

123 242 5 45 36 149 250

56 232 202 204 41 229 44

158 251 254 191 22 13 55

224 216 127 28 209 191 217

203 20 12 132 93 56 30

121 215 84 205 53 167 123

98 56 8 218 108 53 87

188 36 140 148 135 84 155

21 228 40 57 51 166 173

143 100 173 232 49 245 249

227 44 203 165 169 93 54

228 184 185 227 29 48 78

123 242 5 45 36 149 190

56 232 202 204 41 229 30

158 251 254 191 22 13 209

224 216 127 28 209 191 228

203 20 12 132 93 56 212

121 215 84 205 53 167 198

160 101 120 19 74 250 81

188 36 140 148 135 84 167

21 228 40 57 51 166 250

143 100 173 232 49 245 121

227 44 203 165 169 93 207

228 184 185 227 29 48 70

123 242 5 45 36 149 82

56 232 202 204 41 229 194

158 251 254 191 22 13 76

224 216 127 28 209 191 181

203 20 12 132 93 56 188

121 215 84 205 53 167 151

188 36 140 148 135 84 155

1920

1
0

8
0

1 pixel

What humans see What machines see

Red

Green

Blue

⇔

What Is An Image?
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Classification Using A Convolutional Neural Network

Convolutional Neural Network (CNN) T U N A

S H A R K

W H A L E
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural

networks. Advances in neural information processing systems, 25.
Image Collection

Model Training

21

Prediction
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Smart Machine Vision Tasks – Static

AlexNet

VGG-16

ResNet-55

EfficientNet

Fast R-CNN

Faster R-CNN

YOLO v4

YOLO v5

U-Net

FCN

DeepLabv3+

Mask R-CNN

MasLab

YOLACT
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Architecture – Localization and Classification

▴ Architecture of the YOLOv5

"objects": [{
"class_id":0, 
"name": “People", 
"coordinates":{
"center_x":0.564741, 
"center_y":0.438410, 
"width":0.691837,
"height":0.637432}, 
"confidence":0.999482
}]
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Smart Machine Vision Tasks – Static

AlexNet

VGG-16

ResNet-55

EfficientNet

Fast R-CNN

Faster R-CNN

YOLO v4

YOLO v5

U-Net

FCN

DeepLabv3+

Mask R-CNN

MaskLab

YOLACT
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Architecture – Segmentation

▴ Architecture of the Fully Convolutional Network (FCN)

• Pixel-wise prediction
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Smart Machine Vision Tasks – Dynamics
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CRNN
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Architecture – Action Detection

▴ Architecture of a Convolutional Recurrent Neural Network (CRNN)

‘Lactating’
or

‘Non-Lactating’

CNN

CNN

CNN

Frames Spatial Features

LSTM

LSTM

LSTM

Temporal Features

FC1 FC2 FC3 FC4

V
id

e
o
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Optimizer

𝑤0

𝑤1

𝑙𝑜𝑠𝑠

SGD

SGD + Momentum

AdaGrad

RMSprop

Adam

• An algorithm that reduce the “loss”
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Hyperparameters

Training strategy

Epochs

Batch size

Confidence threshold

IOU threshold

Optimizer

Learning rate

Momentum

Bias

Decay rate

Loss function

Class loss

Object loss

Box loss

Layer loss

• Used to control the learning process

• Determined manually
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Hyperparameter Tuning

Population Based Training

• Automatically choosing the best hyperparameters

• Required very huge GPU resource

https://docs.ray.io/en/latest/tune/tutorials/tune-advanced-tutorial.html 30
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Training Facility

工
具
人
實
驗
室
伺
服
器

https://www.mlmvlab.bime.ntu.edu.tw/ 31
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Model Evaluation – Model Training

32

▴ Training History
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Model Evaluation – Confusion Matrix

A

B

C

D

E

F

G

H

I

J

FP

33▴ Confusion Matrix
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Deep Learning Frameworks
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Implementation Flow of Machine Vision
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Implementation Flow of Machine Vision
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Database

Image Useful informationLabel
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Database
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Implementation Flow of Machine Vision
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Implementation Flow of Machine Vision
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User Access – Interface
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User Access – Service Architecture
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User Access – Useful Service Tools
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Applications of Machine Vision
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Computing Methods
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Tomato diseases doctor

LINE Chatbot Tomato diseases identification system
Tomato leaves 

images

Legit images

Yellow spots 

images
Leaf-mold/

powdery-mildew-II 

distinguishing model

Tomato diseases 

identification model

Abnormal

detection model

Feedback

Input

Input images

PowdwerymildewI-

0.978

LINE Chatbot

Controller

Tomato Disease Identification
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Tomato Diseases
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Tomato Disease Identification
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Wood Recognition

API

species identification and data storage serverusers
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Overview of the Proposed System

• Composed of three components: (1) mobile APP, (2) wood classifier, and 

(3) image database
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The Mobile Application
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Fish Type Identification and Counting

52

• Electronic monitoring system

• Identifying the fish types automatically

• Measuring the length of the fish automatically
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Fish Type Identification and Counting
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Fish Type Identification and Counting
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Shrimp Length Measuring
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• The shrimps raised in a concrete-walled outdoor ponds

• Videos of the shrimps acquired using an underwater camera
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Shrimp Length Measuring
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Shrimp Length Measuring
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Long-term Monitoring of Shrimp Length
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Chicken Dispersion and Movement Monitoring
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Chicken Detection
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Chicken Tracking, Movement, and Dispersion
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Long-term Movement Observation
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Movement Warning System
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Long-term Dispersion Observation
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Dispersion Warning System
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Sow and Piglet Activity Monitoring
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Sow Posture Recognition

67Lactating (left)

Feeding Standing Sitting Recumbency

Lying Lactating (right)
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Sow Posture Recognition

68



Yan-Fu Kuo

Dept. of Biomechatronics Engineering

Piglet Tracking
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Localization TrajectoryTracking
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Piglet Activeness
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Piglet Activities
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Unfed Piglet Detection

72

• Find unfed piglets by combining two models
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Unfed Piglets
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